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ABSTRACT

This paper deals with the structural and stability properties of the

averaging approximation scheme for linear retarded functional differential

equations. Both in the discrete- and in the continuous-time case the

structure of the approximating systems is shown to be analogous to the

structure of the underlying retarded equation. Moreover, it is shown that the

approximating systems are exponentially stable in a uniform sense if the

original system is asymptotically stable.
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SIGNIFICANCE AND EXPLANATION

Functional differential equations play an important role in a large

number of practical problems (wind tunnel control, ship stabilization, steel

mill, chemical engineering, population dynamics). They can be represented as

ordinary differential equations in infinite dimensional spaces. Approximation

methods are needed in order to solve problems like dynamic feedback

stabilization, optimal control or parameter identification. For some of these

problems Lyapunov stability properties of the approximating systems are of

considerable importance. These are studied in the present paper by means of

an analysis of some fundamental structural properties of the approximation

scheme.
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STRUCTURE AND STABILITY OF FINITE DIMENSIONAL APPROXIMATIONS
FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

Dietmar Salamon

1. INTRODUCTION

The object of this paper is to present some new results on the averaging

approximation scheme for linear retarded functional differential equations (RFDE).

The averaging approximation scheme has been invented and studied by several Soviet

authors in the early sixties (see e.g. REPIN 1181, further references and a detailed

review can be found in BANKS-BURNS [2]). A general convergence proof, a stability

analysis and applications to optimal control problems have been presented for the first

time by BANKS-BURNS [1],12]. Related discrete-time approximations have been considered by

DELFOUR (6], REBER [11], ROSEN (19]. Recently, GIBSON [9] has used the averaging scheme

for approximating the solution of the algebraic Riccati equation associated with a

retarded system. However, there remained one open problem in the convergence proof in (9]

which has not yet been resolved. This is the question whether the approximating systems

are uniformly exponentially stable for sufficiently large N if the underlying RFDE is

stable. In (9] this has been stated as a conjecture without proof. We show in section

4.2 that this conjecture is in fact correct.

Another motivation for the present work comes from some recent developments in the

theory of retarded systems in the product space framework. One of these is the

introduction of so called structural operators for the state space description of RFDEs

which have made the linear theory much more elegant and efficient (see e.g. BERNIER-

MANITIUS (3], MANITIUS (14], DELFOUR-MANITIUS (71). They have led to a number of new

results in the control theory of RFDRs, namely on problems like completeness of

eigenfunctions, controllability, observability, and the linear quadratic optimal control

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. MCS-8210950.
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problem. Another important development was an interpretation of the adjoint semigroup in

terms of the underlying RFDE. Extensions to neutral systems and further references can be

found in SALAMON [20].

The problem has not yet been considered whether analogous results can be developed

for finite dimensional approximations of RFDEs, in particular the averaging approximation

scheme. In this paper we fill this gap. It is shown that the approximating systems

satisfy analogous duality relations as the RFDE and certain structural matrices are

introduced which play an analogous role for the approximating systems as the structural

operators do for the RFDE. Moreover, it is shown that these matrices actually converge to

the corresponding structural operators. These results have several important

consequences. For example, they lead to a uniform convergence result for the resolvent

operators and they are crucial for the proofs of the stability results in section 4.2.

In the preliminary section 2 we give a brief overview over some recent results in the

theory of linear retarded systems in the product space framework and describe the

averaging approximation scheme. Section 3 is devoted to the study of the structure of the

approximating systems which is shown to be analogous to the structure of the underlying

RFDE under several aspects. A number of convergence proofs is then given in section 4.1

and two stability results are proved in section 4.2. In the appendix (section 6) we prove

two functional analytic results which are frequently needed in section 4. In particular,

we give a quantitative estimate for the equivalence of Lp - stability and exponential

stability for strongly continuous semigroups.

2. LINEAR RETARDED SYSTEMS AND AVERAGING APPROXIMATION

2.1 LINEAR RETARDED SYSTEMS

We consider the linear retarded functional differential equation

x(t) = Lx t , t > 0, (2.1)
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where x(t) e R n and xt  is defined by x t(T) x(t+ ), -h 4 T 4 0, h > 0.

Correspondingly L is a bounded linear functional from C = C [-h,OR 0 into R
n 

given

by

0
L# dn(T)*(T), * e C,

-h

where n(T) is an nxn-matrix valued function of bounded variation. Without lose of

generality we can assume that n is normalized which means that n(T) - 0 for

T ) 0, n(T) = n(-h) for T 4 -h, and n() is left continuous for -h < T < 0. At some

places we will assume that L is given by

q 0

LO A #(-h.) + f A 0 1 (T)4CT) dr, * e C, (2.2)

j.0 -h 0

nxn
where 0 h0 < ... < hq h and A R , j 0, ... , q, as well as

2 nxnnn
A01 () e L (-h,0;13xn]. In this case n R R R is clearly given by

q

n(T) = - AX( -,0 ) - AX (T)
j=1

0
- - I A 0 1 (o) do, t e U.

T

where X denotes the characteristic function of the interval I.

It is well known that equation (2.1) admits a unique solution2 n 12
x() e L 2o-h,-;iUn I W [0,_:3

n ] 
for every initial condition of the form

0o 1.

x(O) -
0 , x(r) = (T), -h 4 T < 0, (2.3)

where 0 (0 0, 1) e 1
n 
x L [-h,0;

n ] 
_: M2

. This solution depends continuously on

2 Inxn
* e m 2 The fundamental solution of (2.1) will be denoted by X(t) e 1 , t ) -h, and

-3-



corresponds to the initial condition X(O) = I, X(T) = 0, -h 4 r < 0. It can also be

characterized by the Volterra integral equation

t
X(t) - I - f ri(s-t)X(s)ds

0

and its Laplace transform is given by A) -  where AM)) - )I-L(e ), X e 4, is the

characteristic matrix of (2.1).

Proofs of these facts can be found e.g. in HALE [10] or DELFOUR-MANITIUS [7].

2.2 SE4IGROUPS AND STRUCTURAL OPERATORS

In the theory of RFDEs - as well as of other types of integral and functional

differential equations - there are essentially two ways of introducing the state of the

system which are actually dual to each other. The state of system (2.1) in the

"classical" sense is the pair z(t) I (x(t),x e M2 which completely describes the pest

history of the solution. Its evolution determines the strongly continuous semigroup

S(t) of bounded linear operators on M2  defined by

S(t)# - (x(t),xt) e m 2 , * e m2 , 
t 0,

where x(t), t ) -h, is the unique solution of (2.1) and (2.3). The infinitesimal

generator of S(t) is given by

2 1 1,2 0 1
dom A = {0 e m2t01 e W1 ' 2 ,  (0)1,

A- (L#,,;

where W1 , 2  denotes the Sobolev space W 1 (-h,0,R1. In an analogous way we may

introduce the semigroup S T(t) e L(M 2), t ) 0, with infinitesimal generator AT

corresponding to the transposed RFDE

-4-



L(t) Lxt , t 0. (2.4)

The duality relation between (2.1) and (2.4) can be described by means of an

alternative (dual) state concept which is due to MILLER (15. It can be motivated from

the fact that the solution of the RFDE (2.1) (t>0) can be derived from the initial

function (t40) in two steps. First convert the initial function 0 into a forcing

term of suitable length which determines the future behaviour of the solution. Secondly

determine the solution which corresponds to this forcing term. The dual state concept is

obtained by regarding this forcing term as the initial state of the system rather than the

solution segment. To be more precise, we rewrite equation (2.1) as

0
f(t) I dn(l)x1t+T) + f

1 
(-t), x(O) - f 0  

(2.5)

-t

where the pair f - (f ,f ) e M is given by

a

f 0 , fI(a) f J dn(T)0(T-O), -h 4 a 4 0. (2.6)

-h

2
Now the initial state of (2.5) is given by f e M . Correspondingly the state at time

t 2 t 2 n
t ) 0 is the pair w(t) - (x(t),x ) e m where x e L [-h,0,R

n ] denotes the forcing

term of the shifted equation (2.5) and is given by

xt(a) = f dn(T)x(t+T-o) + f (0-t), -h 4 o 4 0. (2.7)
a-t

The evolution of this state (x(t),x 
t
) e m2  is described by the semigroup S (t) (see

e.g. SERNIER-MANITIUS [3] or SALAMON (20]).

Summarizing this situation, we have to deal with the following four semigroups

S(t) ST(t)

; •
S It) S (t)

-5-



The semigroups on the left correspond to the RFDE (2. 1) and those on the right to the

transposed RFDE (2.4). On each side the upper semigroup describes the respective equation

within the "classical" state concept (solution segments) and the one below within the dual

state concept (forcing terms). The diagonal relations are actually given by functional

analytic duality.

The relation between the two state concepts can be described by means of so called

structural operators. These have been introduced by BERNIER-MANITIUS (3], MANITIUS (14],

DELFOUR-MANITIUS (7] and have turned out to be a very elegant and efficient concept in the

control theory of RFDEs. The operator F e L(M 2 ) maps every * e m2  into the
corresponding initial state

F4 = f e m
2

2
of (2.5) which is given by (2.6). The operator G e L(M) maps every forcing term

2
f e m into the corresponding solution segment

2
Gf = (x(h),xh) e m

of (2.5) at time h. Thus Gf can be explicitly described as

0 1
(Gf] = [Gf] (0),

h10

[Gf' (T) - X(h+T)f
0 

+ f X(h+t-s)f (-s)ds, -h - r f 0.
0

Obviously, G is bijective as an operator from M2  into dom A and its inverse is given

by

-10 1[G *]°  0 C1-h),

0

G-10]1(0) * l(-o-h) - f dn(T)C1(T-a-h), -h 4 a 4 0.
a

-6-



* *

for # e dam A. A remarkable fact is that the adjoint operators F and G play the

same role for the transposed equation (2.4) as the operators P and G do for the

original equation (2.1). Moreover, the following result has been proved by MANITIUS [141

and DELFOUR-MANITIUS [7].

THEOR 4 2.1

(i) S(h) = GF, S (h) - FG.
T

(ii) S(t) S Tt)F, S(t)G - GS Tt), t ) 0.

(iii) If 4 e dam A, then F$ e doa AT and AF FA#.

We close this section with a concrete representation of the resolvent operator. For this

sake we introduce for any A L2 (t the operators E~ n M2 and TA 4 2 M 2 by

defining

[E.]0 1 AT

[E X] = x, [Ex] (T) = e x, x e
0

0T¢] 1 ( - )1 2
(T = 0, [TA4] (T) = f e )do, e m

Then the following result has been proved in MANITIUS [13] and DELFOUR-MANITIUS (7].

PROPOSITION 2.2 Let det AM) + 0. Then

(Al-A)-1 E A A) E F + TA,

(AI-A) = FE A )- E A+ T .

-7-
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2.3 AVERAGING APPROXIMATION

In this section we briefly describe an approximation scheme for RFDEs which has been

studied by REPIN [18], BANKS-BURNS [I, [21, GIBSO [9] and many others. To this end we

introduce for every N e w the linear subspace X
N C M2  

defined by

xN  e N2 14 1(T) = z. e Rn
, 

- h < - h, J = 1.. ... a
N N

N 2 N
and denote the corresponding orthogonal projection by p M + X . This subspace can
be identified with Rn(N

+
l) by means of the embedding iN :n(N+1) M2

by: + which

T TT n(N+I)
associates with every z = (z0,...,zN) e R the pair

[Iz] 0  
= z 0

z[ z](rI = z, - N h ( r - iZNh, j = 1,. ..

On a 
n (N + ) 

we will always consider the induced inner product

< z,w N zQw, z, w eR

where

1 0 .L. .]

~The corresponding vector and matrix norms will be denoted by 1.1 N.  The adjoint operator

NI~ : * R
n + 1  

is then given by

N N

[, 0, {N~ N,] = h 1 (T)dr, j = 1 . ...

N

.] -



N N
Obviously, the operators I and 1! satisfy

N N N N N
w I - id, I X . p (2.9)

On 2 
n (N + 1 ) 

we consider the differential equation

z (t) z (t , t > 0, (2.10)

where

A 0  A, . . . . A N

N N I2
A H

and

N h
A = lim [!1(T + L) - r(T)], j 0. N. (2.12)

T+-jh/N

N N -1N N
Tn an analogous way we define the matrix A T  Q HT  where the A. are replaced by

(N N

(A for j - 0,1,...,N. Then the adjoint matrix (A T  of AT  with respect to the

inner product < '*, >N is given by
N

:4F N
A I

N
) TA -I

(A N = (Q ) (N T ( (N • (2.13)
T T T I

N

-9-

--- 3



We also consider the differential equation

-t) (AT W , t 0, (2.14)

O. j
n ( N + 1 )  

The following theorem has been proved in BANKS-BURNS [21 and GIBSON [9).

THEOREM 2.3 Let L : C + R
n  

be given by (2.2). Then the following statements hold.

(i) For every 0 e m we have 0 = lim p N

N+.D

(ii) There exist constants M ) 1, w ) 0, such that

NAN C*t
le

A  (Me Ile I N Me
N N

for every t ) 0 and every N e n.
2 2

(iii) For all 0 e M , f e M

N N
5

A t (A) t
N N *N N T N

S(t) - lira I e *, S T(t)f lir I e a f
N+- N+-

and the limits are uniform on every compact interval 10,T].

FULL DISCRETIZATION

A fairly general and extensive study of full discretization methods for RFD~s can be

found in REBER [17) and ROSEN [191. Since the aim of this worX is to explore the special

structure of the averaging approximation scheme described above, we content ourselves with

the consideration of a simple one step Euler approximation for the ODE (2.10) which has

also been studied by DELFOUR 161 and PEBER (17) for time varying systems

Replacing the derivative in (2.10) by a difference quotient with step size h/N, we

get the diffet -e equation

-10-
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N h N N
Zk+ I (I + A ) z , k ) 0, (2.15)

in n(N+1 )
in R Since

II N h N hN
I 1A - A -A

N0 N I NN

N

I O

the n(N+1)-dimensional Ist order difference equation (2.15) is equivalent to the

n-dimensional (N+1)st order difference equation

N

Nh (+ 1 - ) = AjN xN 
k j

, k ) 0, (2.17)

by means of the identification

x 
k

N Rn(N+)(
k (2. 18)

xk-N

Equation (2.17) may be interpreted as a direct application of a 1-step difference approach

to the RFDE (2.1) with xN approximating x(kh/N). Finally, note that this

simplification of the difference equation (2.15) is only possible because of the

coincidence of the step size h/N for the time-discretization with the mesh size of the

N 2
spatial discretization in the subspace X C M

3. THE STRUCTURE OF THE APPROXIMATING SYSTEMS

It is the goal of this section to analyse in detail the structure of the

approximating systems (2.10), (2.14) and (2.15) respectively (2.17). It is shown that

-11-
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there is a strict analogy to the structure of the underlying RIDE (2.1) as it has been

described in section 2.2. In particular, there are certain structural matrices PN and

GN playing the same role for the approximating systems as the operators F and G do

for the RFDE (2.1).

3.1 THE STRUCTURAL MATRICES

Starting from (2.17), we observe that there is another way of transforming this

(N+1)st order difference equation into an equivalent Ist order equation. For this sake

let us rewrite (2.17) as

k
'kj( x - ) " A k + I k ) 0,

i-o (3.1)

N N

where A :=0, f. :0 for j N andI

N N

f 0  0 ,•

(3.2)

The forcing term

f N

fN e Rn(N+l)

f fN

may be considered as the initial state of (3.1) since it contains all the information
N

which is needed for determining the future behaviour of its solution xk , k ) 0.

-12-



Correspondingly the state at instant k e N is given by wN e en") where

wkwk
N N
W k,0  ' k

k+1-1 (3.3)
wN I A N xN +N
k , J .1 j k + t l -i fk + 1 1 £ " 1 , . ,

N
Then it is easy to see that wk  satisfies the l:t order difference equation

N . 1 N N
W k+ I  (I+ N AT ) wk, k A 0, (3.4)

since

N h

N 0 N

AN 0
AN

Note that (3.4) can be regarded as a one step Euler approximation for the ODE (2.14).

We conclude that there are two state concepts for the difference equation (2.17),

namely (2.18) and (3.2-3), both of which lead to a first order difference equation in

n(N+1)
Rn  , namely to (2.15) and (3.4). The relation between these two state concepts can

N be described by certain structural matrices FN and G. Before defining these matrices,

we introduce the concept of a fundamental solution for equation (3.1).

DEFINITION 3.1 The fundamental matrix of equation (3.1) is the sequence

xN mmn

X ep , k > 0, defined by

N(X N - X ) A, N k e , X= I. (3.5)

-13-



Remark 3.2

(i) By induction, it is easy to see that

k
N N N N N
h k+1 Xk) Xk j Ail k e N. (3.6)

J-0

(ii) The solution of (3.1) is given by

k-1N .
N  

fN 4.h. I N f N k 03 7'k "k 0o N 1 j= k-j' k)O 37

Now we introduce the matrices1 00 ....
F N (3.8)

A1

and

N 
N

N 0

GN 0CN~ (3.9)

Then~ ~ it ises oseN N n(N+I)

Then it is easy to see that f = F z0  if z0 e R is defined by (2.18) and

fN e Rn(N+l) is the forcing term of (3.1) defined by (3.2). Moreover, if "k, k > 0,

N n(N+1)

is the solution of (3.1) and zN e R is defined by (2.18), then it follows from

N N N
remark 3.2 that zN = C f

N
. Making use of these facts, one can easily establish the

following result which is strictly analogous to theorem 2.1. The proof is left to the

reader.

-14-
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PROPOSITION 3.3
h AN) N h TN M NN

(i) (I + hA - G F , (I + (A )*)- F .

MN NN N N NT

(ii) FA (AN)'F ,A"G N G (A )'.

(A)t N (At "
(iii) Fe

A t  
T F , G GNe T, t ) 0.0 0 0 .°  .... °

NA N M

(iv) (G N)-
1  

0 h h .0T•

.. N.
- 1 0 0 A 0 % -

We conclude that, for any solution z N(t) of (2.10), the function w N(t) - F N N(t)

satisfies (2.14) and, conversely, for any solution wN(t) of (2.14), the function

zN(t) . GNwN(t) satisfies (2.10).

3.2 SPECTRAL THEORY

In this section we give a brief overview over some spectral properties of AN and

N *(A ) which are analogous to wellknown results in the theory of RFDEs. In particular,

we will see that the rational complex nxn-matrix valued function

A k I- L N (A) LNCX) _ A N N J, X (3.10)
J0j N+)Xh

plays precisely the same role for the approximating systems as the characteristic matrix

AMA does for the underlying RFDE (2.1). Moreover, we introduce the matrices

I N
N+Xh

N j -0
E L e n(N+)xn3.11)

N N

N-15-



and

I -I *

0 0 . . . 0

T N h e n(N+1)xn(N+1) (.2
A N 1 , 0TA )N N" I ,

f N+Ah N+Ah

for X e t, A - N/h.

LEMMA 3.4 Let A e , A -N/h, and z,w e tn(N+1) be given. Then (XI-A N)z w if and

only if

N N
Z EAz + TAw (3.13)

and

A N(A)Z0 = (E) TQ F Nw. (3. 14)

PROOF Clearly (ALI - A N)z w v if and only if (AQ - H N)z Q w or equivalently

N
Az 1- A Azj w0 , (3.15)

j0

N hi (3.16)

j N+Ah N wj + Zj- 1 ], j .

Equation (3.16) is equivalent to

i
N+X 0 N V . vh JIV

-16-
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and hence to (3.13). If this is satisfied, then (3.15) is equivalent to

N A h i N J

0 0 0 0 J Ij N+Xh jv

W LN -)VN N
0 1 -;Xh Aj wj+ vV-1 v-

X) Q F w. U

Note that the above lemma is strictly analogous to a well known result in the theory of

RFOEs (see e.g. HALE 10], DELFOUR-KANITIUS [7] 1). It has several important consequences

which are summarized in the proposition below and can be proved straight forward.

Statement Mi) can be found in BANKS-BURNS [2]. Statement (iv) is the analogon of

proposition 2.2.

PROPOSITION 3.5

(i) Let A e (, A 4 -N/h, then A e O(A N ) if and only if det A N(A) - 0.

N N
(ii) A - -N/h e O(A ) if and only if detA% O.

(iii) o1MA1) N o(A ) - oNA )
T T

N
(iv) If A 4 -N/h and det ANIA) 0, then

N- I N -1 NT NN N

(AZ- ) A EA(X) (EA) Q F + TA,

N -1 N N N(A-1lNEMTN ,N)T
(AI-A T F E A A ( + (

REMARK 3.6 A solution x(t) of the RFDE (2.1) is said to be small if it vanishes after

some finite time T (HENRY [11]). If L : + R
n  

is given by (2.2) and if A 01(.) 2 0,

then there exist nonzero small solutions of (2.1) if and only if det A - 0 (MANITIUSq

-17-
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[14]. Now note that for sufficiently large N this means that det A - 0 and henceq

-N/h e O(A ) (proposition 3.5 (1i)). This indicates that the generalized eigenmodes of

(2.10) respectively (2.14) corresponding to the igenvalue A - -N/h play the role of

the small solutions in the approximating systems. Moreover, note that the solutions of

the difference equation (2.15) starting with generalized eigenvectors of AN

corresponding to A - -N/h are precisely those solutions which vanish after a finite time.

4. CONVERGENCE AND STABILITY

Having introduced a number of operators for the approximating systems which are

analogous to well known operators in the theory of RFDE, we may pose the question, if -

and in what sense - these operators converge. This problem will be considered in the next

section.

4. 1 CONVERGENCE

We begin with some preliminary facts.

REMARK 4.1

N nxn
i) It is easy to see that the function n: R R defined by

nN (T) = lim n(T), k1 h < T h , k e z,
T kh/N

satisfies the inequality

f InlT) - n NT)IdT h VAR(n) . (4.1)

-h

N

(ii) For every A e €, A I -N/h, let us define the function e, [-h,0] 1 € by

e = N -T) - h I T < h, j
X N+Xh N N

-18-



Then it is well known that the limit

li sup I T 
- eACT)I = 0 (4.2)

N- -h(T(0

exists uniformly on bounded subsets of the complex plane.

The following convergence result for A N() has been shown by BANKS and BURNS (2].

For completeness, we present an alternative and simplified proof.

LF.MMA 4.2

i) ANM converges to AC) uniformly on every bounded subset of the complex plane.

(ii) For every a )- 0 there exists a constant c > 0 such that IL CA)l 4 c for every

N e X with N > ah and every A e with Re A ) -a.

PROOF Note that

A. 0 Ar-h 0
Lle .) fo e TdnlT) - -nl-h)e - A f nlT)e ATdT

-h -h

and, by (3.10) and (2.12),

~ L 1~~ N N N+Ah
j-.0

i: N

NN N N
=-n C-h) C- n A- J=N-1 h)

N+Xh N I N N+Ah
J.1

NCh A fo ,N (T) e Ci) drn(-h)e X (h) -

Thus statement Mi follows immediately from remark 4.1. Statement (ii) follows from

(3.10) with c = VAR(rn) sup N(-) IN > ahl < .
N-ah

-19-
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For the next result we need the space

M R' x L [-h,0,4
n ]

endowed with the norm I1 max {11, I11 ) for * e m ,

N L

THEOREM 4.3 The limits

Jis lE I NEN1  N T N T N I

N +W A ( n,M- ) N+ - X (m2,MA
}

exist uniformly on bounded subsets of the complex plane.

PROOF The statement on EA is an immediate consequence of remark 4.1 (11), since

N N N n
EAx . (x,e (.)x) e m for x e tn, N e m and A e t, A f -N/h.

2
In order to prove the second part of the theorem, let us 

first define e(A,T) e m

by

0e 0 -h 4 a < Tt

e(XT)
0 

= 0, e(A,T) (a) ) (T-o)
*T 4 0 4 0,

for A e ( and -h 4 T 40. Then

[T P ](T) - < e(X,T), p N > = < p Ne(,T),f >kA

2o

for all # e m2 , A e t, N e v and T e f-h,0]. Moreover, the closure of the set

fe(A,T) I AIl 4 c, -h 4 T 4 01 in M
2  

is compact and thus pN converges uniformly on~N

this set. Hence TAp converges to TA in L(M ,M ) uniformly on bounded subsets of

the complex plane.

Secondly, note that

1 0
N N I N v 0 1I jjh

( TAI () N N-- z f e N ()(I Nz] N_0 do
A NV- -jh/N

-20-



and hence

N 1 -. N NN.1

I(TIp * Cr]([) - N TANW *i 1T)I

I(AN*] Iy N 1AP _ lb1  + 0NoJET #Ie() - [T , f S - e Co)IIpN*]lC( - o,1 do
A A N -jh/NAN

for - h ( T < - h, j = 1,...,N. Thus the statement of the theorem follows from

remark 4.1 (ii) together with the fact that the set

( IT 1 +1 1 c, e en 2 . 3,3 < 1)

is equicontinuous for c < e

THEOREM 4.4 For every # e m

F0 - lim INFNN

PROOF We prove this result in 3 steps. The first step is a formula for the operators

N NwN
N F andF :

N N N 0
Step I ( IF#] . [ -W ]0  f and for j 1,...,N

N N h/1
[W F% - - "h  I n(r-h) [ C) - * Ct-hA,,)] d-

-h

j h -h

Proof Let us define 1() - 0 for T (-h,01. Then

[w F*1 - N 0 dn(r)# t-a) do
-- h.h -h
N

-2'1-



N 0 
1 4

h d- (T dr() f *(0) do

-h

' -h) (c) do - - [*r.-h C) +--
_ h N+N 

N

N

-h
N N rl h

h N_ h - (-(-[h()-+',- ]a-h

N h/N r1 1 h
- j~ n(11T- h) 10'CT) -0* T-11)] dT

Nh/ N 1 N~]d

-h

N N

(F~wN*A J wj[N ] v-i +1

Sv_ i N N

N N

. Nh J [fNC [nh) N(- h)J 
-  

g(r-~) ]  I
rdN N

V-h

NhN Nj 1 h
I [n J (-h T )-' T--ih 01T)d

-h N

for 1,..N. This proves step 1.

NN

Step 2 NFNI ' sup 1 h, VARn)} n N e T.

Proof By the well known convolution inequality, we have

-22-
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N N NI[F~z] 2 
"  I [ Avzvjl ,

j ) j. v-j

N N

v 1 j-1

4 [ VAR(ln)]
2  N I12

J=1

and hence

N 2 2 h N 2
IF ZN 1zo1 +01 I[Fz] I

N

1zol
2 + [VARln)]

2 h ' Iz 1 2

C [max {1, VAR(fl)}]
2
,z,2

n(N+1N

for z e It and N e N. This proves step 2.

NFN N 2
Step3 F4 - Lim F v# e M

N*-

Proof Let us first assume that 4is continuously differentiable and that

4(0) - 0. Moreover let us define 4(T) -0 for T > 0. Then it follows from

step 1 and (4.1) that

N N m
-I[ F4] - [Fir,41 I

hf n ( - n(T-- 1! [ I(r) * (r-h/N)l dri
-h N N h

0. N ./
f 1N (T) - n(r)l dT sup h I 1(a) dol

-h -h(T(h/N T-h/M

- VAR(r)
N ~ '

-23-
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and hence

IF$ - N NWN

. I*F - pNF i + iNF" - FN ,I

< iF _ PNF,, + h [N [NI - [FNWNdI i2]1/2

N [1 1

N h .1

< ,F - pN FfI + - VAR(W) IVI..
N3/2

2
For any * e M the statement follows from the Banach-Steinhaus theorem and step 2. This

proves the theorem. U

Combining the above convergence results with the concrete representation of the resolvent

operators given in proposition 2.2 and proposition 3.5, we obtain the following result.

The proof is a straight forward application of lemma 6.1 and will be omitted.

COROLLARY 4.5 The limits

lim I(XI-A) - N(AI-AN)- wN 1 0 ,
N L(M , M

®
)

_s *(AI-A T ) - (XI-(A - )*) IN - 0
T2 L(m

2

exist uniformly on those bounded subsets of the complex plane which are uniformly bounded

away from the zeros of det AM).

THEOREM 4.6

lim IG - iNGN N = 0.
N+- L(M ,M )

-24-
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PROOF We establish this result in three steps.
N

Step 1 Let Xj, j > 0, be given by (3.5) and let us define

K Nt) :- X N h f t < h, 0 , 1,2.j N "" "

Then XN(t) converges to X(t) uniformly on every compact interval (0,T]o

Proof For every k e U

k-i
N X

N  
N

k I V1 - VV.0

k-0 v1~
I + b Y ,AN N

v-0 J-0 v-j

+ L k-I k-I
AN N

k-i+ Ni+-J NJ.0 Ij-

- h / N n h XN do

and hence for h 4 t < -k-- h

N N

x(t) - N(t) x(t) - x( k h )

kh/N nN~ -h &(-h)l xsd
0

kh/N kh
+ f n (aC- )X) - ~s)] Xds

0

Thus the desired convergence result follows from Gronwall's lemma.

-25-
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Step 2 Let z e a
n (N +

1
) 

and j e {1,...,N). Then

N N 0 N hN Ni1
[ G z) X (h)z0 + f XN(s)[1 z I (s-h)ds,

0

h

N N 1 N N Nz h
(I G z] (T) X (h+T)z 0 + f X (s)[i I (s-h+-L)ds, - h 4 T < - h.

0 N N N

Proof If - h C T < - 7-1 h, then
N N

N h N-j-1[IGzl() N-j 0 + N t0 L
t 

zN-J-1

1+1h

= XN (h+T)zo + d xN(s) [,N] (d
t0 L= h N

-h

SxN (h#]Tz + f XN(s) !,Nz]l(s-h-) ds.

0 N

In the case j = 0 this equation leads to the desired expression for iN G Nx]
0.

Step 3 lim G - iG i 0.
L 2

N L(M ,M )

, 1 1
I

Proof First note that the functions [Gf] e C, f e M I 1l ( 1, are equicontinuous

since the canonical embedding of W '
2  

into C is a compact operator.
n(+1

Now let z e R 
n (N + 1 )

. Then, by step 2,

N N GNz] 0

h
= [X(h)-xN(h))zo + f [X(s) - xNs)] 1 N 1(s-h) ds

0

and for - I h ( < - 1 h, j = 1. N,
N N

-26-



I

N N N I
(GI z - I G :Z ()

- G Nz] (T) - (GI N 1  - )  + [X(h-'L) - xN(h N-- ]z0

+ [X( a) - XN(s)] INz1 I(s--h)du.
0 

N

By step I and the equicontinuity mentioned above, this implies

lim IGiN - INGNI nCN+) - 0.N ft L( n N l )  m

2

Moreover, note that the operator G M MO is compact. So is the extended adjoint
* * 2

operator G*: (M )* + M . By lemma 6.1, this implies

lim IG - GpNI lim IG -p I - 0.N "ft L(M2, M) N- LCMm ) M

Hence the statement of the theorem follows from the inequality

N N N N N NIG - ING 1I 4 IG - Gp 1 + IGi - I G
NI U

L(M2,MI) L(M,MI)  L(in (N + l ,M

2

Let f e M be given and let x(t), t ) 0, be the corresponding solution of (2.5).

N(Moreover, let xN.t), t 4 0, be defined by

x" t N Nk  , k h r. t < h+ h, k > 0,

N N

where xk, k > 0, is the unique solution of (3.1) corresponding to

fN w N f e 3 (N + 1 ) . Then the previous theorem shows that

lim sup Ixlt) - x N(t)l = 0
N*- [0,T]

-27-



2
and moreover that this convergence is uniform for bounded f e m . This haa also been

proved by REBER (17, theorem 7.51 under the condition that L C R
n  

is given by (2.2).

Let us now introduce the operator families s N(t e L(M2), S (t) e L(M2 ), t ; 0, by
T

N Nr N N N*(t_ N[ h N C
SAC) L' N.ST Ct) - - (AT) ]kN.

s (t) I 'NI + N1 A"''n

k +1 (4.3)
- t ( -/ h, k - 0,1,2,.
N %]

Then the following result is a direct consequence of theorem 4.4 and theorem 4.6 together

with the factorization results (theorem 2.1 (i) and proposition 3.3 (i)).

COROLLARY 4.7

2 2i) For all * e m , f e m

S(t)# = lim SN(t)., S (t)f lim S (T )f
T T

and the convergence is uniform on every compact interval (0,T].

(ii) For every k e x

N * NC
lim IS(kh) - S (kh)I 2 lim I S (kh) - S (kh)| 2 0.
N L(M , M) N-, L(M

PROOF It only remains to note - for the proof of statement (ii) - that, by lemma 6.1,

lim I S(h) - GINFN N 2iU N /M
, 
M

)

lim IF*G* N(FN)TwNG*| 2 '0. m
N
''  

LC( ( ) ,M)

-28-
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Statement (ii) of the above result is apparently new. The strong convergence of statement

(i) has been stated without proof by DELFOUR (6]. The strong convergence of S N(t) has

been shown by REBER [171 and ROSEN [19].

4.2 UNIFORM STABILITY

It is a simple consequence of corollary 4.7 that the discrete time systems (2.15) and

(3.4) are stable in a uniform sense if the underlying RFDE (2.1) is exponentially

stable. More precisely, we have the following result.

THEORDI 4.8 Let w < 0 and suppose that det A(A) + 0 for every A e ( with

Re A ) w. Then there exists an NO e v and a constant y > 0 such that

1(I + h AN)k 1  ye wkh / N

N N

for every N ) N0 ,

PROOF It follows from a well known result in semigroup theory that there exists a
wk 0h

k0 e x such that IS(k 0h)1 < e By corollary 4.7 (i), this implies the

existence of an N O e N such 'hat

hN k0N <" 0N
(r + t A N) IN , N ) N o .

Moreover, it follows from corollary 4.7 (i), that

~-wc Oh

0y :- e sup (1(1 + ' AN)tI It - 0, ..., k0 N-1, N e u) <.
N N0

We conclude that the following inequality holds for N ) 0 and k - vk0N + I with

v e Hi and I e (0, . k 0N-1)

-29-
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1(I + -1 A" )k 4 1 (1 +h A N)1 I 1(I + hA ) k0NIN N N N N

wk0 h wvk 0 h
• ye e

w(vk +t/N)h
SYe

wkh/N
Ye .

It follows easily from lemma 4.2 that the stability of the RFDE (2.1) also implies

the stability of the approximating continuous-time systems (2.10) and (2.14) if N is

sufficiently large (the precise arguments are given in the proof of theorem 4.9 below).

However, a uniform estimate in the spirit of theorem 4.8 has not yet been proved in the

literature on these approximation schemes. It has been stated as a conjecture by GIBSON

[9] and provides - in that paper - a crucial step in the convergence proof for the

solutions of the algebraic Riccati equation. REPIN (18] also claims the uniform stability

of the approximating systems (2.10), however, his arguments are extremely unclear and it

seem almost impossible to convert them into a rigorous proof. The following theorem

closes this important gap in the approximation theory of RFDEs and may be considered as

the main result of this paper.

THEOREM 4.9 Let L C R
n  

be given by (2.2) and let the RFDE (2.1) be exponentially

stable. Then the approximating systems (2.10) and (2.14) are uniformly exponentially

stable for sufficiently large N. This means that there exists an N e N and constants

£ ) 0, Y ) I such that

| tN, (A ) t
lA t IN' le T IN4Y-Ele IN ( Ye

for every t 0 and every N) N .
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PROOF First note that the statement on (A follows from that on A N. Secondly, it
T

follows from theorem 6.2 and the exponential estimates in theorem 2.3 (I) that it is

enough to show that there exists an Na e Y and a constant c > 0 such that

7 1eA t zl dt C
2 
1 z 2  (4.3)

0 N N

for every z e in """ and every N A N0 . We will prove this in 5 steps.

Step I There exists an N 0 e v such that det A (A) + 0 for every A e with

Re X > 0 and every N ) N0 .

Proof By lemma 4.2(11), the complex function dot A NC) cannot have a zero in the closed

right halfplane outside the disc of radius VAR(M) centered at the origin. Inside this

disc the nonexistence of unstable eigenvalues of A follows from lema 4.2(i) if N is

sufficiently large.

Step 2 For N e N let us introduce the matrix

N N 1 NxN
a e R

h

Then there exist constants Co > 0, Y0 > I such that

N. - 0 t

Ie I NXN 4_Y0
e  

V t > 0 V N e N.

TN N
Proof First of all it is easy to see that x a x < 0 for every x e IN and every

N e ff. Hence it follows from a well known result in semigroup theory that

-31 -



N

e a tNxN 1 V t > 0 v N e . (4.4)

Moreover

N Nt/h ••
N - t

at h "
e = e

and hence

aN t C N-1 Ntk -Nt/h
NxN k h

for every t > 0 and every N e a. Since

k k-Nt/h k+ 1
t e dt - k1 (h/N)

0

this implies

N N-1I lea t, dt 4 h = h0 NxN N0 k=0

Toqether with (4.4) this estimate proves the statement of step 2 (theorem 6.2, p = I).

More precisely, £0 > 0 may be chosen to be any constant less than 1/h.

.,- Rn(N+I1
Step 3 For every z e R and every N e •

2

7 T N d ( wYO Iz'2
Tiw N C- N

-32-



Proof First note that

Nh

(IN -a h* • j
N N

and hence [0 01
T,- [ (4.5)

0 (X AI-a N )1 9 n

n(N+1)Now let z e R be given. Then, by step 2, the function

a N tI N
a(t) - *e I n3 ,t >O,Sn 1:

N

is square integrable on the interval [0,-) and its Fourier transform

;(J.) Jei"Ot ( *N 1 n] ;(O)
V2w 0 2 N

satisfies 1.1 Igi I 2Hence if follows from equation (4.5) and
L2 n4 L2 [0 nRN*Lz -,.i € L (o,..ns

step 2 that

-ITI N N I 2 CU (iW -[INa")-II in)_ 2(),n dw

N N nN dN

2wh 2lz(iw)I dw

-33-



2wh l-t)12 dt

2,h 2 -2c t

0e dt IZ(0 N

2
IFYO 1.12 .

C0

This proves step 3.

t There exists a constant c > 0 such that the following inequality holds for every

z e Rn (N + 1 ) and every N ) N0

N- 2 2

(i ,_AN)-lzl
2 

du 4 2wc 2 Iz .

N N

Proof Recall that

N-i N N -1 N T NN N
(iwI-A E 'i (iW) (E W)TQ F + Ti. e R,

(proposition 3.5). By step 3, it remains to establish the desired inequality for the

first term on the right hand side of this equation. Moreover, it follows from theorem 4.4

that the operators FN are uniformly bounded and it is easy to see that the operators

N N N T N
E" and (Q) (E are uniformly bounded on the imaginary axis. Thus it remains

to prove the desired estimate for the term N (iw)
-
l. But for IwI > VAR (W) it follows

from lemma 4.2 (ii) that

IAN (iM)-1 1 (iw)k- L (iW) I 1
k0 Iwi - VAR(T1)"k-0

-34-
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This inequality, together with lemma 4.2 shows that

sup f j2iw <
N)N 0 -a

This proves step 4.

Steo 5 For every z e e
n N + 1  

and every N > N0

a . ~t. 2 2

f e Atzt2 dt < c IzI2 .0N N

~N
Proof Let z e Wn(N+

l
) and z(t) = e4 ts for t ) 0 and N No . Then z(t) is

square Inteqrable on (0,-) and its Fourier transform is given by

-1/2 N-I4weoti
1 )tw - (2w)- W(i-A )- . By the Fourier-Plancherel theorem and step 4, we obtain

a" N a

f t le 2 dt - (2w) I (i(.,_AN)-z.N d. C c J,.,
0 N N

This proves step 5 and the statement of the theorem. 1

REMARK 4.10

The uniform exponential decay rate -E for the approximating systems (2.10), (2.14) which

has been found in the proof of theorem 4.9 is always larger than -1/h. The question

remains open if one can find a uniform exponential bound for the approximating systems

with the exponential decay rate w0 + £ where (O . sup (Re AldetA(A) w 01 and C > 0

can be chosen arbitrarily small. It is also an open problem if the operators iNeA tWW

converge to the (compact) operators S(t) e L(M2 ) 
in the uniform operator topology if

t ) h. If this could be shown, then the solution to the uniform stability problem

mentioned above would be an immediate consequence.
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5. CONCLUSIONS

The present paper studies in detail certain finite dimensional approximations for

linear retarded systems, namely the averaging approximation scheme, both a continuous -

and a discrete-time version as well as the relation between these two. It turns out that

these finite dimensional approximations show - under several aspects - precisely the same

structure as the underlying FWDE. In particular, the duality relations are of the same

type and there are certain structural operators which play an important role for the

description of the approximating systems and are analogous to those which have recently

been introduced by BERNIER-MANITIUS [3], MANITIUS [14], DELFOUR-MANITIUS [7] for the study

of RFDEs. Moreover, it is shown that these operators actually converge to the

corresponding operators in the theory of retarded systems. One of these convergence

results, namely theorem 4.6, is only a slight extension of a corresponding result by IEBER

[17, theorem 7.5].

Based on this detailed analysis of the structure of the approximating systems, it is

shown that both the discrete- and the continuous-time approximations are stable in a

uniform sense if the underlying RFDE is asymptotically stable. Such a result is by no

means obvious and not all approximation schemes have this property. For example, it is

shown in KAPPEL-SALAMON [12] that spline approximations for RFDEs can never have the

property of uniform stability. Nevertheless, the uniform stability result provides a

crucial step in the convergence proof of GIBSON [9] for the solutions of the algebraic

Riccati equation. Moreover, the structural matrix F
N  

introduced in this paper allows a

factorization of the approximate Riccati operator in precisely the same manner as it is

shown in KAPPEL-SALAMON [121 for the spline approximation scheme. Finally, it seems

likely that the uniform stability results of this paper have some implications for the

construction of finite dimensi vnal compensators for RFDEs. This is a research problem for

future investigations.
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6. APPENDIX

In this section w formulate and prove two general functional analytic result which

are needed frequently in section 4.

LEMMA 6.1 Let A be an arbitrary set and let X,Y,Z be Banach spaces. Moreover, let

aa a
K e L(X,Y), Tc e L(Y,z), Tk e L(Y,Z), a e A, k e 0, be bounded, linear operators with

the properties

(i) cl(Kax ja e A, x e X, x ( 1I C Y is compact

(ii) T a y - lim Tky for all y e Y uniformly in a e A.
kaa t

Then TL K tends to Ta K a L(X,z) in the uniform operator topology as k tends to

infinity and this convergence is uniform in a e A.

PROOF Note that for every C > 0 there exist finitely many x,.., xn  e X and

a na e A such that for every a e A and every x e x with 1x1 4 1 there is a
a

J e (1,...,n} such that IKx - K ix I( . Hence the desired uniform convergence

result follows from the inequality

IT K x - TN'aI r 4I'I - ITailKa. - Ka1x I + ITaK a - T a K ax I.

The next result is a quantitative estimate for the equivalence of LP-stability and

exponential stability for strongly continuous semigroups. This equivalence has been

proved - for the case p - 2 - by several authors, see for example DATKO (5), CURTAIN-

PRITCHARD (41, PRZYLUSKI (16]. But none of these give the desired quantitative estimate

which is essential for the proof of uniform stability in theorem 4.9. Again in the case

p - 2 such a quantitative estimate can be found without proof in GIBSON (8]. We mention

-37-
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that some of the ideas in the proof of the theorem below are taken from PRZYLUSKI 8,

proposition 9] and ZABCZYK (21, theorem 5.1].

THEOREM 6.2 Let S(t), t 0, be a strongly continuous semigroup of bounded, linear

operators on a Banach space X satisfying the exponential bound

IS(t)t ( Me , t 0, (6.1)L(x)

for some constants M ) 1, > ) 0. Moreover, let I • p < - and suppose that there

exists a constant c > 0 such that

f IS(t)x
P 

dt 4 cPx|p , x e x. (6.2)
0

Then, for every

a > - I- q(6.3)
: pcPMP

there exists a y y(a,W,M,c,p) > I such that

|S(t)J L(x ye t > 0. (6.4)

REMARK 6.3 If

- a <0,

-38-



then there exiats a unique T > 0 satisfying

e-cpT 1+ T

cp14peapT

or equivalently

a .pT log T + eWP (6.5)

The proof of theorem 6.2 shows that in this came Y y(*,w,1M,c,p) Ican ce chosen as

Y T I/PC1' (6.6)

PROOF OF THEOREM 6.2

L~t T > 0 be given and let us define

T
£ C(T)- 0. (6.7)

T + cPMPeWPT

Then it follows from (6.1) and (6.2) that

k0O

j S~kT)xIp' dt

1 xI1' + f I S(T-t)IP IS((k-1)T+t)x3p dt

S1x1' + $ up *Sct)ipj f IS(t)xl' dt
T (0,T] 0

T
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- 1ll~l.

for every x e x. 7isi implies that

i IS(T) k+1 xli'= IS(T) kxIp - IxI' -C (1-c) j IS(T )kxlp
k-0 k-0 k-0

and hence

ISCT)mxI I S(T )kmxEpl/p

k-0

for every xe x and every m ev. Now let t WrT+ T >O and me m and

o 4 < T. Then we conclude that

IS(t)xI -C IS(T)IIS(T) xl

N e WlT C- -i/p (-)/

3 ~loq(1-e) ~-1

- loqlC) C-f+T
(Me W c eIP(IC-/ e pT xi

Y e atlXI
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where

a - *(T) - - l c PMP.WPT < 0

log T+CPMPSWpT

and

Y - y(T) - Me'diC
1
1

/ p - [T + cPMPe(pT12/p
T I/p c

(compare (6.5) and (6.6)). Thus the statement of the theorem follows from the fact that

a(T) is strictly increasing for T > 0 and satisfies

lim a(T)
T+0 pcPMp  U
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